2023文化遗产知识大赛_2

网上科普有关“2023文化遗产知识大赛”话题很是火热,小编也是针对2023文化遗产知识大赛寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。

2023文化遗产知识大赛,颁奖典礼在故宫博物院举行。

首届全国青少年文化遗产知识大赛自二零二三年三月启动报名以来,有来自全国二十三个省、五个自治区、四个直辖市、两个特别行政区的中小学生参赛,累计达六十九万人次,正式注册参赛学校和机构三千七百余家。

全国青少年文化遗产知识大赛是教育部批准的、面向中小学生的全国性竞赛活动之一,由中国文物保护技术协会主办,今年是首届比赛。

通过与全国多所知名院校和博物馆紧密协作,大赛组委会在比赛期间积极推动文化遗产进校园、科普知识宣传、博物馆互动教育等活动,积极摸索将文化遗产传承保护和科技应用等跨学科知识系统科学地应用于基础教育的新方法,获得广泛的社会认可。

经过市级初赛和省级复赛,来自全国各地的中小学获奖选手齐聚北京,在通过笔试、面试、专项展示、情景剧表演和博物馆现场互动答题等形式,最终决出个人赛、团体赛、古琴专项赛、文化创客专项赛、数字化专项赛、九章算术专项赛、家书专项赛等不同赛项的全国前三名。

文化遗产的介绍

文化遗产指的是在历史、艺术、建筑、传统等领域具有文化、历史和社会价值的物质或非物质遗产。代表着一个国家、地区或社群的传统、价值观和身份,经过世代传承,这些遗产不仅是人类创造力和智慧的体现,也是历史研究和文化交流的重要资源。

保护和传承文化遗产对于维护人类多样性和促进跨文化交流具有重要意义。许多国家和国际组织致力于保护和管理文化遗产,例如联合国教科文组织设立了世界遗产名录,旨在保护具有全球重要意义的文化和自然地点。

蒋干用计周郎笑打一数字

古希腊学者毕达哥拉斯(约公元约前580~约前500年)有这样一句名言:“凡物皆数”。的确,一个没有数的世界不堪设想。

今天,人们对从1数到10这样的小事会不屑一顾,然而上万年以前,这事可让人们煞费苦心。在7000年以前,他们甚至连2以上的数字还数不上来,如果要问他们所捕的4只野兽是多少,他们会回答:“很多只”。如果当时要有人能数到10,那一定会被认为是杰出的天才了。后来人们慢慢地会把数字和双手联系在一起。每只手各拿一件东西,就是2。数到3时又被难住了,于是把第3件东西放在脚边,“难题”才得到解决。

就这样,在逐步摸索中,华夏民族的祖先从混混沌沌的世界中走出来了。

先是结绳记数,然后又发展到“书契”,五六千年前就会写1~30的数字,到了2000多年前的春秋时代,祖先们不但能写3000以上的数学,还有了加法和乘法的意识。在金文周<※鼎>中有这样一段话:“东宫乃曰:偿※禾十秭,遗十秭为廾秭,来岁弗偿,则付秭。”这段话包含着一个利滚利的问题。说的是,如果借了10捆粟子,晚点还,就从借时的10捆变成20捆。如果隔年才还,就得从借时的10捆涨到40捆。用数学式子表达即:

10+10=20

20×2=40

除了在记数和算法上有了较大的进步外,华夏民族的祖先还开始把一些数字知识记载在书上。春秋时代孔子(公元前551~前479)年修改过的古典书籍之一<周易>中,就出现了八卦。这神奇的八卦至今在中国和外国仍然是人们努力研究和对象,它在数学、天文、物理等多方面都发挥着不可低估和作用。

到了战国时期,数学知识已远远超出了会数1~3000的水平。这一阶段他们在算术、几何,甚至在现代应用数学的领域,都开始了耕耘播种。算术领域,四则运算在这一时期内得到了确立,乘法中诀已经在<管子>、<荀子>、<周逸书>等著作中零散出现,分数计算也开始被应用于种植土地、分配粮食等方面。几何领域,出现了勾股定理。代数领域,出现了负数概念的萌芽。最令后人惊异的是,在这一时期出现了“对策论”的萌芽,对策论是现代应用数学领域的问题。它是运筹学的一个分支,主要是用数学方法来研究有利害冲突的双方,在竞争性的活动中,是否存自己制胜对方的最优策略,以及如何找出这些策略等问题。这一数学分支是在本世纪第二次世界大战期间或以后,才作为一门学科形成的,可是早在2000多年前,战国时期著名的军事家孙膑(公元前360~前330年)就提出过“斗马术”问题,而这一问题的内容,正反映了对策论中争取总体最优的数学思想。“斗马术”问题说的是,齐威王要和大将田忌赛马,他们每人各有上、中、下等马各1匹,田忌那3匹马比起齐威王的来,都要略逊一筹,如果用同等级的对应较量法,田忌必输无疑,田忌为此急得不知如何是好。这时,孙膑从旁点拨,田忌用了孙膑的办法,以2:1取胜齐威王。

孙膑用的是什么方法呢?请看下面的示意图:

田忌 齐威王

下等马 上等马

上等马 中等马

中等马 下等马

看到这,你不觉得我们的祖先实在是很聪明吗?

当历史推进到秦汉时期,祖先们不再往骨头上刻字了。他们把需要记的事都用毛笔写在竹片上、木片上,这种写了字的竹、木片被称为“简”或“牍”。这种简或牍以西汉时期的流传下来最多。

从那些汉简中,我们发现,秦汉时期在算术方面乘除法算例明显增多,还出现了多步乘除法和趋于完整的九九乘法中诀。在几何方面,对于长方形面积的计算以及体积计算的知识也具备了。

这个时期最值得一提的,要算是算筹和十进位制系统了。有了它们,祖先们就不再为没有合适的计算手段而发愁了。在我国古代,直到唐朝以前,一直用着这一套计算系统。

算筹的确切起源时间至今还不清楚,只知道,大约在秦汉时期,算筹已经形成制度了。

要明白算筹是怎么回事,先得知道什么叫筹。筹就是一些直径1分、长6分的小棍儿,这些小棍儿的质料有竹、木、骨、铁、铜等。它们的功用同算盘珠相仿。目前,筹的实物已出土多批,1971年在陕西千阳县出土的一座长方形男女合墓中发现,那具男尸的胯部系着一个丝绢带囊,囊内装有一把骨筹。1980年在石家庄南郊出土的一批早期骨筹,也是挂在死者的腰部。由引可见,算筹在汉代知识分子中已经通用。关于如何使用筹,根据记载是这样的:在计算时,将筹摆于特制的案子上,或随便摆放都可。对于5以下的数字,是几就放几根筹,而对6~9这4个数字,则需要用一根横放或竖放的算筹当5,余下的数则仍是有几摆几根算筹。

为了计算方便,古人规定了纵横表示法。纵表示法用于个、百、万位数字;横表示法用于十、千位数字,遇到零时,则空一位。

十进位制系统,正是我们今天日常生活中常用的逢十进一法。就是说,对正整数或正小数而言,以十为基础,逢十进一,逢百进二,逢千进三等等。十进位制系统的产生,为四则运算的发展创造了良好的条件。

发展繁荣时期

编辑

中国数学发展繁荣时期大约在西汉末期至隋朝中叶。这是中国数学理论的第一个高峰期。这个高峰的标志就是数学专著<九章算术>的诞生。至少有1800年的《九章算术》,其作者是谁?由谁编纂?至今无从考证。史学家们只知道,它是中国秦汉时期一二百年的数学知识结晶,到公元1世纪时开始流传使用。

这本书全书共分为九章:

①方田(分数四则算法和平面形求面积法)。

②粟米(粮食交易的计算方法)。

③衰分(分配比例的计算方法)。

④少广(开平方和开立方法)

⑤商功(立体形求体积法)

⑥均输(管理粮食运输均匀负担的计算方法)。

⑦盈不足(盈亏类问题解法,也涉及能够用这种解法处理的其他类型问题)。

⑧方程(一次方程组解法和正负术)。

⑨勾股(勾股定理的应用和简单的测量问题的解法)。

全书收录了246道数学应用题,每道题都分为问、答、术(解法。有的一题一术,有的一题多术)三部分,而且每章的内容都与社会生产有着密不可分的联系。

这本书的诞生,不仅说明中国古代完整的数学体系已经形成,而且在世界上,当时也很难找到另一本能同媲美的数学专著。

在这一数学理论发展的高峰期,除了《九章算术》这部巨著之外,还出现了刘徽注的《九章算术》以及他撰写的<海岛算经>、<孙子算经>(作者不详)、<夏侯阳算经>、<张丘建算经>和祖冲之的<缀术>等数学专著。

这一时期,创造数学新成果的杰出人物是:三国人赵爽、魏晋人刘徽和南朝人祖冲之。

全盛时期

编辑

中国数学的全盛时期是隋中叶至元后期。

任何一个国家科学的发达,都有离不开清平开明的社会环境和雄厚的经济基础。从隋朝中叶到元代末年,由于统治者总结了历代王朝倾覆的教训,采取一系列开明政策,经济得到了迅速发展,科学技术也得到了很大提高,而作为科学技术一部分的数学,也在此时进入了它的全盛时期。

在这一时期,数学教育的正规化和数学人才辈出,是最主要的特点。

隋以前,学校里的教育并不重视数学,因此,没有数学专业一说。而到了隋朝,这一局面被打破了,在相当于大学的学校里,开始设置算学专业。到了唐朝,最高学府国子监,还添设了算学馆,其中博士、助教一应俱全,专门培养数学人才。这时,数学教育的受重视,还反映到了选官问题上。据古书<唐阙史>记载,有这么一个故事:唐代有个大官,名叫杨损。他让手下的人推荐一个优秀的办事员加以提升。手下的人经过千筛百选,最后剩下两个人时,拿不定去掉哪一位好。因为这两个办事员各方面的条件太一样了:职位相同,“工龄”一样,评语类似……选谁好呢?没办法,只好把矛盾上交了。杨损得知这个消息之后,也费了不少心思,斟酌再三,最后决定出一道数学题来考考他们。他对这两位候选人说:“作为办事员,职业决定你们应该有算得快的能力,我出一道题,谁先答对就提升谁。”后来,先答对的人,理所当然地得到了升迁,而另一个人也心悦诚服地回到了原位。由此可见,唐代对数学的重视程度。

有了数学专业。就少不了好教材。这个时期,有唐朝数学家李淳风(?~公元714年)等人奉政府的命令,经过研读、筛选,规定出了国子监算馆专用教科书。这套教科书名叫<算经十书>,全套共十部:<周髀算经>、《九章算经>、<孙子算经>、<五曹算经>、<夏侯阳算经>、<张丘建算经>、<海岛算经>、<五经算术>、<缀术>和<缉古算经>。

对这套专业教材,国子监还规定了学习年限,建立了每月一考的制度。数学教育从这时开始走向逐步完善。

在日趋完善的数学教育制度下,涌现出了一代名垂青史的数学泰斗,他们是:王孝通、刘焯、一行、沈括、李冶、贾宪、杨辉、秦九韶、郭守敬、朱世杰……

科学历来是全人类共同的财富,当时中国的数学水平很快引起了朝鲜、日本的注意,他们开始往中国派留学生、书商。经过一段学习,在算法引进了关于田亩、交租、谷物交换等知识;在办学中吸取了国子监的课程设置和考试制度。由此看来,在这一阶段,中国已处于世界数学发展的潮头。

缓慢发展时期

编辑

接下来在元后期至清中期,中国数学的发展缓慢,和上面讲的数学盛世相比,这一阶段几乎黯然失色。

从宋朝末年到元朝建立中央集权制,中国大地上烽火连年,科学技术不受重视,大量宝贵的数学遗产遭受损失。

明朝建立以后,生产曾在一个短暂时期里有所发展,但马上又由于封建统治的腐败,走向了衰落,直到清朝初年才缓过一口气来。

处在这样一种政治腐败、经济落后、农民起义此起彼伏的环境中,数学跌入低谷也是情理之中的事。

然而世界发展的潮流历来是不等人的,乘中国数学衰落的功夫,西方数学悄悄地追上来,并且反过来渗透进中国。

当西方资本主义开始萌芽的时候,为了寻求发展,天主教传教士、海盗、商人纷纷涌进中国。他们除了从中国带走了原料、市场、廉价劳动力,也带来了一些文化知识。

16世纪~18世纪来华的传教士中,以意大利人利玛窦(公元1552~公元1610年)影响最大。在1583~1599年,当他活动于中国肇庆、韶州、南昌、南京等地时,结识了不少中国著名学者,如李贽、徐光启、李之藻等人。这些人正处于不满空谈理学,渴望富国强兵的思想状态中,为此他们迫切希望世界上的最新科技成果。而利玛窦的到来,无疑是起了一拍即合的作用。

利玛窦与徐光启和李之藻分别合译了两部数学著作:<几何原本>、<同文算指>。

其中《几何原本》文字通俗,很少疏漏。尽管当时原著中的拉丁文没有现成的中国词汇可对照,但是徐光启仍是克服困难,创造出许多恰当的译名,使全书达到信、达、雅的水平。

从利玛窦与中国学者合译专著开始,西学东渐的势头越来越大。

那么这个时期中国自己的数学“特产”是什么呢?是珠算。

在隋唐时期,人们已经开始在改进筹算上打主意了。他们想办法简化筹算方法、编口诀……然而,在迅速发展的数学领域中,筹算法必然会被其他算法所代替。

元朝末期,小巧灵便的算盘出现了。人们看着这计算简捷、携带方便的新工具欣喜异常,甚至有人把它编到了俗语、诗歌、唱词中。

算盘的出现,很快就引出了珠算口诀和珠算法书籍,16、17世纪,在中国大量的有关珠算的书籍中,最有名的是程大位的《直指算法统宗》。珠算普及以后,筹算便自动销声匿迹了。

就在中国人发明珠算后不久,1642年,19岁的法国数学家巴斯加(公元1623~1662年)推出了世界上最早的计算机。目前,虽然世界已进入了计算机时代,然而珠算仍有它的一席之地。有人试过,在加减法运算中,它的速度甚至超过小型计算器。

中西合流期

编辑

在中国数学发展缓慢的时候,西方数学已大跨步超前,于是在中国数学发展史上出现了一个中西数学发展的合流期,这一时期约为公元1840年~1911年之间。

前面讲到,16世纪前后,西方传教士带来了一些新的数学知识。尽管有些洋人怀有个人目的,但不管怎么说,新知识能传进来,这对中国的数学进展总是有好处的。然而,1723年清朝雍正皇帝登基时,有人就提出大批传教士在华,对他们的统治不利。皇帝一想,也是。于是马上下令,除了少数在中国编制新历法的外国人之外,其他传教士一律不留。

这一命令产生的后果是,在以后大约100年的时间里,西方的数学知识也很难“进口”;中国数学家只好把眼光从学习西方新知识,转回到研究自己的旧成果了。

古代数学回光返照的局面没持续多久,鸦片战争失败了,闭关自守的局面被打开了,帝国主义列强纷纷进来瓜分中国,中国一时间沦为半殖民地、半封建的社会。

19世纪60年代开始,曾国藩、李鸿章等为了维护腐败的清政府,发起了“洋务运动”。这时以李善兰、徐寿、华蘅芳为代表的一批知识分子,作为数学家、科学家和工程师参加了引进西学、兴办工厂、学校等活动,经过他们的不懈努力,奠定了近代科技、近代数学在中国的发展基础。

当1894年“洋务运动”以军事失败而告终时,工厂、铁路、学校却保留了下来,科技知识也在一定的范围内传播了开来。

这一时期的特点是中西合流。所谓中西合流,并不是全盘西化,数学工作者们在研究传统数学的同时吸收新的方法,一时间,出现了人才济济、著述如林的好势头。

这时,中国数学家在幂级数、尖锥术等方面已独立地得到了一些微积分成果,在不定分析和组合分析方面也获得了出色的成绩。然而,即使是这样,在世界的同行们之中,中国也仍然没达到领先的地位。

现代数学开端

编辑

近代数学的开端主要集中在公元1911年~1949年这一时期。

到了19世纪末20世纪初,中国数学界发生了很大的变化,派出大批留学生,创办新式学校,组织学术团体,有了专门的期刊,中国从此进入了现代数学研究阶段。

从1847年,以容闳为代表的第一批学生出国后,形成了一个出国留学的高潮。当时出国留学人数每年要达到数千人之多,他们学成回国后,在中国形成了一支不可忽视的现代科学队伍。

早期出国留学的人中,学数学的人不多,其中做出突出成就的有:苏步青、陈建功、陈省身、周炜良、许宝、华罗庚、林家翘等人。

这样一批海外学子归来之后,在科研、教育、学术交流等方面都有了新转变。

科研上,1949年以前共发表652篇论文,尽管数量不多,范围也仅限于纯数学方面,但是其水平却不低于世界上的同行们。要知道,就是这点微薄的成果还是在克服了政治、经济等多方面难以想象的困难下取得的。

教育上,建立了正规的课程设置,数学的学时多于文科,对教科书也进行了更新。到1932年为止,中国国内各大学已有一支约155人的数学教师队伍,可以开5至10门以上的专业课。

学术交流上,1935年7月成立“中国数学会”,创办<中国数学会学报>和<数学杂志>。1932年至1936年召开的第9、10次国际数学会议,中国均有人参加。这时,应邀到华讲学的各国数学家也纷至沓来,给过去闭关自守的数学领域,带来了现代的气息。

建国后的发展

编辑

1949年,新中国成立之初,国家虽然正处于资金匮乏、百废待兴的困境,然而政府却对科学事业给予了极大关注。1949年11月成立了中国科学院,1952年7月数学研究所正式成立,接着,中国数学会及其创办的学报恢复并增创了其他数学专刊,一些科学家的专著也竞相出版,这一切都为数学研究铺平了道路。

解放后的18年间,发表论文的篇数占解放前总篇数的3倍多,其中不少论文不但填补了中国过去的空白,有的还达到了世界先进水平。

正当数学家们奋起直追,力图恢复中国数学在世界上的先进地位时,一场无情的风暴席卷了中国。在文化大革命的十年中,社会失控,人心混乱,科学衰落。在数学的园地里,除了陈景润、华罗庚、张广厚等几个数学家挣扎着开了几朵花,几乎是满目凋零,一片空白。

当10年政治灾难过去之后,人们抬头一看,别的国家数学研究早已是高峰迭起,要想追上又需花费不少力气。

中华民族历来就有自强不息的光荣传统和坚韧不拔的耐力。浩劫以后,随着郭沫若先生那篇文采横溢的《科学的春天》的发表,数学园地里又迎来了万物复苏的春天。1977年,在北京制订了新的数学发展规划,恢复数学学会工作,复刊、创刊学术杂志,加强数学教育,加强基础理论研究……

尽管中国目前在世界数学的赛场上已处落后地位,然而,路遥识马力,今后鹿死谁手,仍然是个“x”。

古代成就

编辑

在中国古代数学发展史中,祖先摘到的金牌足可以开一座陈列馆,这里只开一个“清单”,使读者有一个直观印象。

(1)十进位制记数法和零的采用。源于春秋时代,早于第二发明者印度1000多年。

(2)二进位制思想起源。源于《周易》中的八卦法,早于第二发明者德国数学家莱布尼兹(公元1646~1716)2000多年。

(3)几何思想起源。源于战国时期墨翟的《墨经》,早于第二发明者欧几里德(公元前330~前275)100多年。

(4)勾股定理(商高定理)。发明者商高(西周人),早于第二发明者毕达哥拉斯(公元前580~前500)550多年。

(5)幻方。我国最早记载幻方法的是春秋时代的《论语》和《书经》,而在国外,幻方的出现在公元2世纪,我国早于国外600多年。

(6)分数运算法则和小数。中国完整的分数运算法则出现在《九章算术》中,它的传本至迟在公元1世纪已出现。印度在公元7世纪才出现了同样的法则,并被认为是此法的“鼻祖”。我国早于印度500多年。

中国运用最小公倍数的时间则早于西方1200年。运用小数的时间,早于西方1100多年。

(7)负数的发现。这个发现最早见于《九章算术》,这一发现早于印度600多年,早于西方1600多年。

(8)盈不是术。又名双假位法。最早见于《九章算术》中的第七章。在世界上,直到13世纪,才在欧洲出现了同样的方法,比中国晚了1200多年。

(9)方程术。最早出现于《九章算术》中,其中解联立一次方程组方法,早于印度600多年,早于欧洲1500多年。在用矩阵排列法解线性方程组方面,我国要比世界其他国家早1800多年。

(10)最精确的圆周率“祖率”。早于世界其他国家1000多年。

(11)等积原理。又名“祖暅”原理。保持世界纪录1100多年。

(12)二次内插法。隋朝天文学家刘焯最早发明,早于“世界亚军”牛顿(公元1642~1727)1000多年。

(13)增乘开方法。在现代数学中又名“霍纳法”。我国宋代数学家贾宪最早发明于11世纪,比英国数学家霍纳(公元1786~1837)提出的时间早800年左右。

(14)杨辉三角。实际上是一个二项展开式系数表。它本是贾宪创造的,见于他著作《黄帝九章算法细草》中,后此书流失,南宋人杨辉在他的《详解九章算法》中又编此表,故名“杨辉三角”。

在世界上除了中国的贾宪、杨辉,第二个发明者是法国的数学家帕斯卡(公元1623~1662),他的发明时间是1653年,比贾宪晚了近600年。

(15)中国剩余定理。实际上就是解联立一次同余式的方法。这个方法最早见于《孙子算经》,1801年德国数学家高斯(公元1777~1855)在《算术探究》中提出这一解法,西方人以为这个方法是世界第一,称之为“高斯定理”,但后来发现,它比中国晚1500多年,因此为其正名为“中国剩余定理”。

(16)数字高次方程方法,又名“天元术”。金元年间,我国数学家李冶发明设未知数的方程法,并巧妙地把它表达在筹算中。这个方法早于世界其他国家300年以上,为以后出现的多元高次方程解法打下很好的基础。

(17)招差术。也就是高阶等差级数求和方法。从北宋起中国就有不少数学家研究这个问题,到了元代,朱世杰首先发明了招差术,使这一总是得以解决。世界上,比朱世杰晚近400年之后,牛顿才获得了同样的公式。

我也是网上查的,!

数学的题~~~~~~~~~~急!急!急!

蒋干用计周郎笑打一数字是指六八一.

蒋干用计周郎笑猜三个数字。这个问题在一定程度上是一个经典的文化谜语,需要一定的文化知识来解答。事实上,这个问题可以理解为一个数字谜语,需要解析其中的暗示和规律,才能推理出正确的答案。

首先,我们需要理解这个问题的背景。周郎是指诸葛亮的小名,指的是他年少时的样子极似周瑜。蒋干则是他的一个心腹,被认为是投降曹操的叛徒。这道题中,蒋干让周郎猜三个数字,看似是个简单的谜语游戏,但其中应该隐藏着某些规律和暗示。

这个问题实际上是一个重要的文化符号,代表了中国传统数学思维的某些重要特点。中国古代数学家在数的认识和运算方面有着独特的贡献,例如算盘、九章算术等都是中华文化的重要遗产。而数字谜语和数字迷信等传统文化现象,则在一定程度上反映了中国民间数学思维的某些特点和深层次文化内涵。

针对这个问题中的具体数字谜语,我们可以进一步分析其中的规律和特点,推断出正确的答案。根据一般的数字谜语,我们可以发现,其中的数字通常基于某种规律或模式出现。例如,一组数字可能出现了某种顺序,或者是按照某种逻辑排列。因此,我们可以尝试从这些数字中发现某种规律,找出正确的答案。

最终,这个问题的答案是“六八一”。根据谜语的规律,可以发现这三个数字的发音组合起来,形成了一个谐音词,即“路较难”,意味着走这条路比较艰难,需要耐心和智慧。这也正好符合了数学思维需要耐心推导和创新发现的特点。

总之,蒋干用计周郎笑猜三个数字的问题固然不是一个纯粹的数学问题,但是,在其中包含了丰富的文化内涵和数学思维特点。对于我们来说,不仅可以从中挑战自己的思考和推理能力,还可以加深对中华传统文化和数学思维的理解和探索。

将4,8,12,16,20,24,28,32,36这九个数填入井字游戏的格中,使横行,竖行,斜行的三个书想加都等于60

汤米、威利、玛吉和安妮用20美分买了20粒糖果,已知每粒牛奶软糖值4美分,橡皮口香糖1美分可买4粒,巧克力糖1美分可买2粒。

试问:孩子们买了多少粒各色糖?

一位大发善心的贵妇人在路上遇到一个穷光蛋,她把钱袋里的一半钱再加上1美分给了他。这家伙是美国基督教组织托钵僧协会的一名成员,他一面道谢,一面在贵妇人的衣服上用粉笔作了一个他们组织所规定的标记,意思是"一个好东西"。这样一来,她一路上就遇到许多要她施舍的人。

对于第二名乞讨者,她把剩下钱的一半再另外加上2美分给了他。而对第三名乞讨者,她把剩下钱的一半外加3美分给了他。这样一来,她现在身边只剩下1美分了。

试问:开始时,她口袋里有多少钱?

、远望巍巍塔七层,红光点点倍加增; 共灯三百八十一,请问各层几盏灯(问问塔尖几盏灯)?

——明代数学家程大位编著的《算法统宗》

2、有个学生资性好,一部《孟子》三日了,每日添增一倍多,问君每日读多少。

(《孟子》全书34685字)

3、三百七十八里关,初行健步步为难,脚痛每日减一半,六朝才的道其关,要见每朝行里数,请君仔细祥推算。

4、放牧任粗心大意,三畜偷偷吃苗青;苗主扣住牛马羊,要求赔偿五斗粮,三畜户主愿赔偿,牛马羊吃得异样,羊吃了马的一半,马吃了牛的一半,请问各畜赔多少。

5.蒲第一天长3尺,以后逐日减半;莞第一天长1尺,以后逐日倍增,问多少天后蒲、莞长度相等?——《九章算术》

6.今有金菙(鞭子)长5尺。斩本一尺重四斤,斩末一尺重二斤。问次一尺各重几何?——《九章算术》

7.良马初日行一百九十三里,日增十三里,求其15日所行里数。——《九章算术》

8.今有女善织,日益功疾。初日织五尺,今一月织九匹三丈。问日益几何?——《孙子算经》

9.今有初门往见九堤,堤有九木,木有九枝,枝有九巢,巢有九禽,禽有九雏,雏有九毛,毛有九色,问各几何?——《孙子算经》

10.今有户出银一斤八两一十二铢。今以家有贫富不等,令户别作差品,通融出之。最下户出银八两,以次户差各多三两,问户几何?——《孙子算经》

1、蝴蝶效应

气象学家Lorenz提出一篇论文,名叫「一只蝴蝶拍一下翅膀会不会在Taxas州引起龙卷风?」论述某系统如果初期条件差一点点,结果会很不稳定,他把这种现象戏称做「蝴蝶效应」。就像我们投掷骰子两次,无论我们如何刻意去投掷,两次的物理现象和投出的点数也不一定是相同的。Lorenz为何要写这篇论文呢?

这故事发生在1961年的某个冬天,他如往常一般在办公室操作气象电脑。平时,他只需要将温度、湿度、压力等气象数据输入,电脑就会依据三个内建的微分方程式,计算出下一刻可能的气象数据,因此模拟出气象变化图。

这一天,Lorenz想更进一步了解某段纪录的后续变化,他把某时刻的气象数据重新输入电脑,让电脑计算出更多的后续结果。当时,电脑处理数据资料的数度不快,在结果出来之前,足够他喝杯咖啡并和友人闲聊一阵。在一小时后,结果出来了,不过令他目瞪口呆。结果和原资讯两相比较,初期数据还差不多,越到后期,数据差异就越大了,就像是不同的两笔资讯。而问题并不出在电脑,问题是他输入的数据差了0.000127,而这些微的差异却造成天壤之别。所以长期的准确预测天气是不可能的。

参考资料:

阿草的葫芦(下册)——远哲科学教育基金会

2、动物中的数学“天才”

蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成。组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料。蜂房的巢壁厚0.073毫米,误差极小。

丹顶鹤总是成群结队迁飞,而且排成“人”字形。“人”字形的角度是110度。更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!是巧合还是某种大自然的“默契”?

蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案,人们即使用直尺的圆规也很难画出像蜘蛛网那样匀称的图案。

冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少。

真正的数学“天才”是珊瑚虫。珊瑚虫在自己的身上记下“日历”,它们每年在自己的体壁上“刻画”出365条斑纹,显然是一天“画”一条。奇怪的是,古生物学家发现3亿5千万年前的珊瑚虫每年“画”出400幅“水彩画”。天文学家告诉我们,当时地球一天仅21.9小时,一年不是365天,而是400天。(生活时报)

3、麦比乌斯带

每一张纸均有两个面和封闭曲线状的棱(edge),如果有一张纸它有一条棱而且只有一个面,使得一只蚂蚁能够不越过棱就可从纸上的任何一点到达其他任何一点,这有可能吗?事实上是可能的只要把一条纸带半扭转,再把两头贴上就行了。这是德国数学家麦比乌斯(M?bius.A.F 1790-1868)在1858年发现的,自此以后那种带就以他的名字命名,称为麦比乌斯带。有了这种玩具使得一支数学的分支拓朴学得以蓬勃发展。

4、数学家的遗嘱

阿拉伯数学家花拉子密的遗嘱,当时他的妻子正怀着他们的第一胎小孩。“如果我亲爱的妻子帮我生个儿子,我的儿子将继承三分之二的遗产,我的妻子将得三分之一;如果是生女的,我的妻子将继承三分之二 的遗产,我的女儿将得三分之一。”。

而不幸的是,在孩子出生前,这位数学家就去世了。之后,发生的事更困扰大家,他的妻子帮他生了一对龙凤胎,而问题就发生在他的遗嘱内容。

如何遵照数学家的遗嘱,将遗产分给他的妻子、儿子、女儿呢?

5、火柴游戏

一个最普通的火柴游戏就是两人一起玩,先置若干支火柴於桌上,两人轮流取,每次所取的数目可先作一些限制,规定取走最后一根火柴者获胜。

规则一:若限制每次所取的火柴数目最少一根,最多三根,则如何玩才可致胜?

例如:桌面上有n=15根火柴,甲、乙两人轮流取,甲先取,则甲应如何取才能致胜?

为了要取得最后一根,甲必须最后留下零根火柴给乙,故在最后一步之前的轮取中,甲不能留下1根或2根或3根,否则乙就可以全部取走而获胜。如果留下4根,则乙不能全取,则不管乙取几根(1或2或3),甲必能取得所有剩下的火柴而赢了游戏。同理,若桌上留有8根火柴让乙去取,则无论乙如何取,甲都可使这一次轮取后留下4根火柴,最后也一定是甲获胜。由上之分析可知,甲只要使得桌面上的火柴数为4、8、12、16...等让乙去取,则甲必稳操胜券。因此若原先桌面上的火柴数为15,则甲应取3根。(∵15-3=12)若原先桌面上的火柴数为18呢?则甲应先取2根(∵18-2=16)。

规则二:限制每次所取的火柴数目为1至4根,则又如何致胜?

原则:若甲先取,则甲每次取时,须留5的倍数的火柴给乙去取。

通则:有n支火柴,每次可取1至k支,则甲每次取后所留的火柴数目必须为k+1之倍数。

规则三:限制每次所取的火柴数目不是连续的数,而是一些不连续的数,如1、3、7,则又该如何玩法?

分析:1、3、7均为奇数,由於目标为0,而0为偶数,所以先取者甲,须使桌上的火柴数为偶数,因为乙在偶数的火柴数中,不可能再取去1、3、7根火柴后获得0,但假使如此也不能保证甲必赢,因为甲对於火柴数的奇或偶,也是无法依照己意来控制的。因为〔偶-奇=奇,奇-奇=偶〕,所以每次取后,桌上的火柴数奇偶相反。若开始时是奇数,如17,甲先取,则不论甲取多少(1或3或7),剩下的便是偶数,乙随后又把偶数变成奇数,甲又把奇数回覆到偶数,最后甲是注定为赢家;反之,若开始时为偶数,则甲注定会输。

通则:开局是奇数,先取者必胜;反之,若开局为偶数,则先取者会输。

规则四:限制每次所取的火柴数是1或4(一个奇数,一个偶数)。

分析:如前规则二,若甲先取,则甲每次取时留5的倍数的火柴给乙去取,则甲必胜。此外,若甲留给乙取的火柴数为5之倍数加2时,甲也可赢得游戏,因为玩的时候可以控制每轮所取的火柴数为5(若乙取1,甲则取4;若乙取4,则甲取1),最后剩下2根,那时乙只能取1,甲便可取得最后一根而获胜。

通则:若甲先取,则甲每次取时所留火柴数为5之倍数或5的倍数加2。 6、韩信点兵

韩信点兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人……。刘邦茫然而不知其数。

我们先考虑下列的问题:假设兵不满一万,每5人一列、9人一列、13人一列、17人一列都剩3人,则兵有多少?

首先我们先求5、9、13、17之最小公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然后再加3,得9948(人)。

中国有一本数学古书「孙子算经」也有类似的问题:「今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?」

答曰:「二十三」

术曰:「三三数之剩二,置一百四十,五五数之剩三,置六十三,七七数之剩二,置三十,并之,得二百三十三,以二百一十减之,即得。凡三三数之剩一,则置七十,五五数之剩一,则置二十一,七七数之剩一,则置十五,即得。」

孙子算经的作者及确实着作年代均不可考,不过根据考证,着作年代不会在晋朝之后,以这个考证来说上面这种问题的解法,中国人发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理。中国剩余定理(Chinese Remainder Theorem)在近代抽象代数学中占有一席非常重要的地位。

关于“2023文化遗产知识大赛”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!

本文来自作者[潭晨曦]投稿,不代表子优号立场,如若转载,请注明出处:https://vip0552.cn/zskp/202412-6334.html

(3)

文章推荐

  • 重要通知微乐亲友房间怎么开挂”其实确实有挂

    您好,微乐亲友房间怎么开挂这款游戏可以开挂的,确实是有挂的,通过微信【】很多玩家在这款游戏中打牌都会发现很多用户的牌特别好,总是好牌,而且好像能看到其他人的牌一样。所以很多小伙伴就怀疑这款游戏是不是有挂,实际上这款游戏确实是有挂的,一、微乐亲友房间怎么开挂有哪些方式1、脚本开挂:脚本开挂

    2024年12月19日
    20
  • 玩家实测“微乐云南麻将万能开挂器通用版”(确实s有挂)-知乎

    您好,微乐云南麻将万能开挂器通用版这款游戏可以开挂的,确实是有挂的,通过微信【】很多玩家在这款游戏中打牌都会发现很多用户的牌特别好,总是好牌,而且好像能看到其他人的牌一样。所以很多小伙伴就怀疑这款游戏是不是有挂,实际上这款游戏确实是有挂的,一、微乐云南麻将万能开挂器通用版有哪些方式1、脚

    2024年12月20日
    6
  • 推荐一款“天虹互娱可以开挂吗”(确实s有挂)-知乎

    亲,天虹互娱可以开挂吗这款游戏可以开挂的,确实是有挂的,很多玩家在这款游戏中打牌都会发现很多用户的牌特别好,总是好牌,而且好像能看到-人的牌一样。所以很多小伙伴就怀疑这款游戏是不是有挂,实际上这款游戏确实是有挂的,添加客服微信【】安装软件. 微信打麻将是一款非常流行

    2024年12月25日
    7
  • 终于呈现“手机打牌软件”(确实s有挂)-知乎

    手机打牌软件是一款可以让一直输的玩家,快速成为一个“必胜”的ai辅助神器,有需要的用户可以加我微下载使用。手机打牌软件可以一键让你轻松成为“必赢”。其操作方式十分简单,打开这个应用便可以自定义微乐小程序系统规律,只需要输入自己想要的开挂功能,一键便可以生成出微乐小程序专用辅助器,不管你是想分享

    2024年12月25日
    6
  • 必看教程“蕲春大打拱有挂吗”(原来真的有挂)-知乎

    您好,蕲春大打拱有挂吗这款游戏可以开挂的,确实是有挂的,通过微信【】很多玩家在这款游戏中打牌都会发现很多用户的牌特别好,总是好牌,而且好像能看到其他人的牌一样。所以很多小伙伴就怀疑这款游戏是不是有挂,实际上这款游戏确实是有挂的,一、蕲春大打拱有挂吗有哪些方式1、脚本开挂:脚本开挂是指在游

    2024年12月25日
    8
  • 玩家实测“微乐a3纸牌有挂吗”其实确实有挂

    您好:微乐a3纸牌有挂吗这款游戏是可以开挂的,软件加微信【添加图中微信】确实是有挂的,很多玩家在这款游戏中打牌都会发现很多用户的牌特别好,总是好牌,而且好像能看到其他人的牌一样。所以很多小伙伴就怀疑这款游戏是不是有挂,实际上这款游戏确实是有挂的,添加客服微信【添加图中微信】安装软件.1

    2024年12月25日
    2
  • 推荐一款“皮皮跑胡子有挂吗”确实真的有挂

    亲,皮皮跑胡子有挂吗这款游戏可以开挂的,确实是有挂的,很多玩家在这款游戏中打牌都会发现很多用户的牌特别好,总是好牌,而且好像能看到-人的牌一样。所以很多小伙伴就怀疑这款游戏是不是有挂,实际上这款游戏确实是有挂的,添加客服微信【】安装软件. 微信打麻将是一款非常流行的

    2024年12月25日
    5
  • 必看教程“湖北打滚有挂吗”确实真的有挂

    亲,湖北打滚有挂吗这款游戏可以开挂的,确实是有挂的,很多玩家在这款游戏中打牌都会发现很多用户的牌特别好,总是好牌,而且好像能看到-人的牌一样。所以很多小伙伴就怀疑这款游戏是不是有挂,实际上这款游戏确实是有挂的,添加客服微信【】安装软件. 微信打麻将是一款非常流行的棋

    2024年12月26日
    8
  • 必看教程“全民比鸡辅助器免费版”(原来真的有挂)-知乎

    无需打开直接搜索微信:本司针对手游进行,选择我们的四大理由:1、软件助手是一款功能更加强大的软件!无需打开直接搜索微信:2、自动连接,用户只要开启软件,就会全程后台自动连接程序,无需用户时时盯着软件。3、安全保障,使用这款软件的用户可以非常安心,绝对没有被封的危险存在。

    2024年12月26日
    2
  • 推荐一款“神牛大厅有挂吗”(确实s有挂)-知乎

    您好,神牛大厅有挂吗这款游戏可以开挂的,确实是有挂的,通过微信【】很多玩家在这款游戏中打牌都会发现很多用户的牌特别好,总是好牌,而且好像能看到其他人的牌一样。所以很多小伙伴就怀疑这款游戏是不是有挂,实际上这款游戏确实是有挂的,一、神牛大厅有挂吗有哪些方式1、脚本开挂:脚本开挂是指在游戏中

    2024年12月26日
    5

发表回复

本站作者后才能评论

评论列表(4条)

  • 潭晨曦
    潭晨曦 2024年12月18日

    我是子优号的签约作者“潭晨曦”!

  • 潭晨曦
    潭晨曦 2024年12月18日

    希望本篇文章《2023文化遗产知识大赛_2》能对你有所帮助!

  • 潭晨曦
    潭晨曦 2024年12月18日

    本站[子优号]内容主要涵盖:生活百科,小常识,生活小窍门,知识分享

  • 潭晨曦
    潭晨曦 2024年12月18日

    本文概览:网上科普有关“2023文化遗产知识大赛”话题很是火热,小编也是针对2023文化遗产知识大赛寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您...

    联系我们

    邮件:子优号@sina.com

    工作时间:周一至周五,9:30-18:30,节假日休息

    关注我们